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Abstract 

Apart from mRNAs and infrastructural RNAs such as tRNAs and rRNAs there are 

other small non-coding RNAs (ncRNAs) that are able to regulate gene expression in a 

tissue-specific and developmental manner. There are two main classes of these small 

regulatory ncRNAs that have been identified: microRNAs (miRNAs) and small nu-

cleolar RNAs (snoRNAs), of which there are two types - C/D-box and H/ACA-box 

snoRNAs. H/ACA-box snoRNAs guide pseudouridinylation of their target RNA, 

which can be either rRNA, tRNA, snRNA or even mRNA leading to conformational 

changes. However, unlike the related methylation guide, C/D-box snoRNAs, only a 

few H/ACA-box snoRNAs have been identified to date. In this study bioinformatic 

methods were developed to predict H/ACA-box like RNAs in the genome of 

D. melanogaster by analysing the structures of a set of known H/ACA-box snoRNAs 

and using machine learning techniques to identify significant sequence and structural 

characteristics. Scanning secondary structures across the whole genome for these 

characteristics predicted between 10,000-44,000 putative H/ACA-box snoRNAs in-

cluding false positives, depending on secondary structure prediction parameters. Ad-

ditionally, information about evolutionary conservation of RNA secondary structure 

amongst up to 6 species was used to obtain a higher confidence set of 183-624 pre-

dicted H/ACA-box snoRNAs with a sensitivity between 3-8%. The results suggest 

that a combination of diverse criteria is required to predict H/ACA-box snoRNAs 

with reasonable sensitivity and selectivity. Microarray and PCR-based experiments 

are underway to validate an expression of these putative small RNAs and to obtain a 

more accurate estimate of the actual number of H/ACA-box snoRNAs in the genome 

of D. melanogaster. 
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1 Introduction 

 

Traditionally, RNA has been considered only to play an infrastructural role as trans-

fer-RNA (tRNA) and ribosomal-RNA (rRNA) or as an intermediate in gene expres-

sion in the form of messenger-RNA (mRNA). However, over the last few decades it 

became apparent that structured RNAs such as miRNAs and longer non-coding RNAs 

(ncRNAs) also regulate the process of gene expression (1,2). Furthermore, as more 

genomes are sequenced and more ncRNAs are being discovered it appears that the 

ratio of non-coding transcripts correlates with evolutionary complexity (3). The dis-

covery in different organisms that the majority their genome is transcribed (4,5), 

while protein coding sequence comprises only a small fraction of it, leads to the as-

sumption that there are much more ncRNAs than previously expected.  

Two main classes of small ncRNAs are known to date: microRNAs (miRNAs) (6,7), 

which target mRNA, and small nucleolar RNAs (snoRNAs) (8). While miRNAs have 

been studied for almost a decade and are still not completely characterized, snoRNAs, 

which are recently revealing diverse functional importance. SnoRNAs were initially 

thought to be solely concerned with the modification of rRNA (9) and snRNAs, but 

since then they have also been found to modify other RNAs as well. Many snoRNAs 

have been identified experimentally by cDNA screens and northern blotting (10-12).  

Apart from their function in telomer maintenance and splicing control (8) snoRNAs 

function as modification guide to rRNAs and snRNAs. Notably, along with experi-

mental identification of guide snoRNAs in different eukaryotes, an increasing number 

of orphan snoRNAs, lacking known targets, have been discovered. One of these or-

phan snoRNAs has been assigned to target the mRNA of a serotonin receptor (13) and 

many of the remaining orphan snoRNAs are expressed specifically in brain. This sug-

gests that there might be more snoRNAs, which fulfil diverse functions and are await 

discovery. At present there are two modifications known to be guided by snoRNAs: 

2’-O-methylation of the target sequence and pseudouridinylation (Ψ). The latter is 

directed by H/ACA-box snoRNAs named according to its short conserved consensus 

sequence motifs. Pseudouridinylation guides have been studied in exhaustively in 

yeast (14-16) and later also in vertebrates (17,18). They range between 120 and 170 
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nucleotides in length and have a characteristic secondary structure (19,20) (see 

Figure 1).  

 

Figure 1. Idealized Secondary 
Structure of a H/ACA box 
snoRNA. H/ACA box snoRNAs 
are characterized by their hairpin-
hinge-hairpin-tail structure. The 
variable ‘H’ motif (ANNANA, 
with N={A,C,G,U}) is located in 
between the two hairpins and the 
‘ACA’ motif can be found 3 nu-
cleotides downstream of the 3’ end 
of the structure. The 2 fold-back-
hairpins usually have bulges, at 
least one of which contains the 
antisense sequence complementary 
to the pseudo-uridinylation site of 
the target RNA.  

 

In contrast to coding transcripts, non coding transcripts such  as H/ACA-box snoR-

NAs are more difficult to detect with biochemical methods because they are relatively 

short (< 170 nt). They are often not polyadenylated and might be expressed only in 

certain tissues and under specific conditions. Although experimental methods discov-

ered some non-coding RNAs (10,11), it became evident that no single screen is able 

to discover all ncRNAs of an organism completely. As shown in previous studies (21-

26) it might be more effective to apply bioinformatic approaches first to detect 

ncRNA candidates and subsequently verify them by biochemical methods such as 

northern blots or microarrays. The growing number of sequenced genomes (27) and 

corresponding annotation databases provides sufficient initial data available to apply 

this procedure.  

Earlier prediction approaches in mammals required a Ψ-site in rRNAs or snRNAs 

(18), restriction of the search to orthologs in introns (28) or to regions of high se-

quence conservation (18,29). Since restriction to a certain genomic locations or tar-

gets should be avoided in this study D. melanogaster (D. mel) is used as a model or-
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ganism (30) because it has a manageable genome size and is therefore ideal for initial 

computational approaches regarding the whole genome. Drosophila species are one of 

the most comprehensively sequenced group of organisms. In total nine insect species, 

including D. mel are annotated (31) and aligned to each other (32,33). The most com-

plete set of known H/ACA box snoRNAs in D. mel comprises 113 partly experiment-

ally validated H/ACA-box snoRNAs (34), all but nine are located in introns and most 

guide rRNA and snRNA Ψ. However, assuming there are many orphan snoRNAs re-

maining undiscovered, it is expected that the total number is much larger – possibly of 

the order of 103–104. (Box 1) In this study it will be investigated if this estimation is 

realistic and therefore predict novel H/ACA-box snoRNAs in D.mel. 

In a bioinformatic context, a prediction is done through observational studies of 

known facts. To test the predictive ability of our algorithm, we measure its sensitivity 

and specificity in regard to the set of known H/ACA-box snoRNAs.  

For each prediction experiment, 4 characteristic values were extracted: ‘true positives’ 

(TP) are known snoRNAs that are detected, where we define ‘detected’ with an over-

lap of the prediction and a known snoRNA allowing a 2nt deviation. ‘False negatives’ 

(FN) are known snoRNAs missed by the method, ‘false positives’ (FP) are predictions 

that are not known H/ACA box snoRNAs and ‘true negatives’ (TN) are sequences 

that are not known to be snoRNAs and also not predicted as such. These four values 

can be tabulated in a confusion matrix shown in  

Table 1. It must be pointed out that the definition of TP and FP is extremely strict as 

there are undoubtedly undiscovered H/ACA-box snoRNAs in the genome. However, 

the performance measurements should not be prejudiced by these estimations and as-

sessed with the 113 known H/ACA-box snoRNAs as the only ‘true’ ones.  

Table 1. Confusion matrix schema showing performance of algorithms described 
in this work.   
    Classified as 

Classes   Y N 
RNA structures which are  

H/ACA snoRNAs = Y TP FN 

RNA structures which are not  

H/ACA snoRNAs = N FP TN 
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To measure the predictive ability of an approach sensitivity, specificity, selectivity (aka 
positive predictive value) are used. Since there are some disagreements regarding their 
definition I define them as follows: 

 

 

 

 

 

Box 1. Order of magnitude calculation (35). for the number of expected H/ACA-

box snoRNAs in D.mel   

! 

sensitivity (X) =
TP

TP +  FN
     [eq. 1]

! 

specificity (Y) =
TN

TN +  FP
     [eq. 2]

! 

selectivity (Z) =
TP

TP +  FP
     [eq. 3]

To define the aim in developing an algorithm with certain specificity and sensitivity more precisely,  

an order-of-magnitude estimation was made:  

The set of known H/ACAs comprises 113 H/ACAbox snoRNAs, which is of the order of 102 

(~102). One H/ACA snoRNA is about 200nt in length, consequently, if there were ~105 H/ACA 

snoRNAs in the genome of D. mel, this would add up to ~107 nucleotides of H/ACA snoRNAs, 

which is 10% of the whole genome. This number is highly unlikely, so the expected number of 

H/ACA snoRNAs in the genome ranges from ~102 to ~104. 

Since the number of known H/ACA snoRNAs is very small in comparison to what we consider to 

be in the genome, its features might not even be representative for the functional group H/ACA 

snoRNA. Consequently we will not care too much about a high sensitivity and instead focus on 

narrowing down the vast number of candidate structures. Assuming a possible structure starting at 

each position of the genome on both strands, there are ~108 possible candidate structures in D. mel. 

To arrive at the upper bound of reasonable predictions the specificity must be at least 99.99%, 

which is almost 1.  

From the known H/ACAs, we must identify at least one to be sure the filter is working at all. Con-

sequently, the minimum bound on the sensitivity is 1%, which is ~10-2. Ideally the sensitivity is 

greater but given this small set of known H/ACA box snoRNAs we have to deal with this uncer-

tainty! The sensitivity can therefore be at least 100 times smaller than the specificity and has to be 

weighted 100 times less than the specificity. We take this ratio for weighting into account later on 

when we compare the different approaches. 
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1ST approach: Prediction of H/ACA-box snoRNAs 

using five criteria 

1.1 Introduction 

At least some con-coding RNAs, including miRNAs and snoRNAs, should undergo a 

selective pressure in the same way as coding transcripts if they fulfil essential func-

tions. Indeed, there are quite recognizable examples of ncRNAs, which can be silhou-

etted against their flanking regions just by primary sequence conservation (36) 

(Figure 2). It seems therefore a promising idea just to work with a conserved subset 

of the genome giving more confidence in the function of predictions. Conservation of 

nucleotide sequence will be used as the first criteria defining H/ACA box snoRNAs. 

The other 4 criteria will be secondary structure  derived from literature (37) (see 

Figure 1). Hence the folding structure of each candidate sequence needs to be ob-

tained using secondary structure prediction tools. 

Figure 2. Example for a highly conserved ncRNA. H/ACA box snoRNA in D. mel 
chromosome 2R. The first row shows position within the chromosome. The second 
row shows blocks that are conserved over a threshold of 0.9. The location of the 
known H/ACA box snoRNA is given in row 3 together with its ID ‘AJ629262.1’. The 
blue line indicates annotated flyBaseGenes (31), the thin line indicates intron, thick 
line protein coding sequence. Below the nucleotide conservation with respect to D. 
mel and 8 more insect species is shown in a conservation profile.  

 

1.2 Method 

First a highly conserved subset of the D. mel genome with was extracted based on the 

whole genome alignment of 9 insect species, (multiz9way, UCSC). The conservation 

threshold was derived by using the program phastCons with a conservation score over 

0.9 [Siepel, 2005 #283]. PhastCons is based on a two-state phylogenetic hidden 
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Markov model and predicting conserved elements based on this model. This con-

served subset comprises ~26% of the D. mel genome (1,591,344 fragments). For the 

purpose of this study however, just the fragments in this subset, which are at least 

120nt in length to fit the minimal size of an H/ACA-box snoRNA are regarded. Sur-

prisingly, this leaves less than 1% (~15,500 fragments) of the total genome. Reducing 

the input more then 100 times decreases the time and space requirement for further 

computational processing for this initial analysis substantially. 

To apply a filter based on secondary structure criteria it is necessary to obtain the 

folding of each candidate RNA using a prediction program such as RNAfold (38). 

Since it is not reasonable to fold sequences that are much longer than the longest 

H/ACA-box snoRNA, these long blocks were pre-processed by tiling. A window of 

180nt in length, sliding nucleotide by nucleotide, yielded a set of structures compris-

ing 49,944 candidate sequences in total. The minimum free energy (MFE) secondary 

structure of these candidates was predicted using RNAfold with the parameters ‘–

noLP’ (allows no lonely pairs) and ‘–d2’ (dangling energies are added for the bases 

adjacent to a helix on both sides in any case) (Vienna Package version_1.5). The file 

containing ID, sequence and secondary structure in bracket notation for each candi-

date serves as input to the following H/ACA-box snoRNA prediction algorithm. 

I developed a filter algorithm for H/ACAbox snoRNA features derived from pub-

lished data (37). It scans for the characteristic H/ACA box snoRNA features (see 

Figure 1). More the selection criteria used in the filter algorithm can be written as 

follows: 

• Appearance of exactly 2 hairpins 

• Appearance of both H-motif and ACA-motif 

• Hairpins sizes should be symmetric 

• Each hairpin stem should have >15 paired bases  

Executable source code of the filter program ‘SnoSearch’ containing the exact speci-

fication of each criterion and additional test input files can be found in Appendix IV.I.  
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1.3 Results 

The filter program was applied to the input set of folded candidate sequences from 

conserved blocks. Since only the conserved subset of the D. mel genome was scanned 

the computation time was ~30min on a linux cluster with 8 processors. More than 

99% of the 49,944 candidates were filtered out by one of the listed criteria. Only 76 

were classified as H/ACA box snoRNA. Amongst these 76 positives none of the 

known H/ACA box snoRNAs appeared.  

1.4 Summary 

The filter criteria appear to be very stringent on the candidate set since it filters out 

~99.84% of total input. Surprisingly, however none of the Huang H/ACA-box snoR-

NAs appears in the set of positively classified H/ACA box snoRNAs. It appears the 

assumptions (a) snoRNAs are highly conserved elements and (b) the perceived char-

acteristic features are not good predictors. 

This could be due to several reasons: (a) the criteria in the filter algorithm do not 

model features of known H/ACA box snoRNAs very well and/or (b) the known 

H/ACA box snoRNAs do not completely appear in the set of conserved regions; or (c) 

the secondary structure prediction does not identify H/ACAbox snoRNA structures. 

In the following chapter these problems will be investigated to improve the prediction 

approach later. 
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2 Possible difficulties 

2.1 Algorithm performance  

The most obvious reason why none of the known H/ACA-box snoRNAs was identi-

fied is that the sequence and structural characteristics are not sensitive enough. To 

investigate this idea, the filter algorithm SnoSearch was applied to the known 

H/ACA-box snoRNAs from Huang previously folded with RNAfold using the same 

parameters as in 2.2. (see Table 2). To determine the impact of each filter criteria, the 

numbers of remaining known H/ACA-box snoRNAs is listed for each step. 

Table 2. Number of snoRNAs from Huang that passed each filter step. 
 

     Filter Remaining candidates after filtering 

  

Input Set 113 100% 

1) Appearance of two hairpins 109 96% 

2) Appearance of H and ACA motif 73 65% 

3) Symmetry of hairpins 61 54% 

4) Length of single hairpins 53 47% 

   

 

Since H/ACA-box snoRNA features were extracted out of the literature, it assumed 

they hold true for the majority of the known H/ACA-box snoRNAs. A sensitivity of 

only 47% suggests that more detailed analysis of the known set will be required for 

choosing filter parameters. However, since at least a subset of the known H/ACA-box 

snoRNAs is picked up by the algorithm, the poor sensitivity is likely to originate also 

in low sequence conservation of the known H/ACA-box snoRNAs.  

2.2 Sequence conservation of known H/ACA box snoRNAs  

Another possible problem for the TP-rate could be that the sequence conservation of 

the known H/ACA-box snoRNAs is not as high as expected. The average length of 

fragments in the set of conserved sequences is 22nt (see  
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Table 1), suggesting that most of the known H/ACA-box snoRNAs might not be en-

tirely covered by one fragment in this set. To investigate this assumption the known 

H/ACA-box snoRNAs  were analysed with respect to their conservation among all 9 

aligned insect species.  To obtain the conserved sequences and intersect their location 

with the set of known H/ACA-box snoRNAs, the UCSC tool ‘featureBits’ was used. 

Table 3 displays the number of nucleotides and run-on sequences without gaps 

(blocks) in the respective file (column 1), ‘Huang H/ACA snoRNAs’ refers to the col-

lection of the 113 known H/ACA-box snoRNAs. ‘phastCons pieces’ are all sequences 

of the D. mel genome where the conservation is over the threshold of 0.9. This com-

prises the input file for prediction. Due to sharp conservation peaks in the sequence 

the number of nucleotides is just ~20 times larger then the number of blocks 

(34,656,886 / 1,591,344 = 21.8), implying that one block is on average 20nt long. 

Therefore it is not surprising no single known H/ACA-box snoRNA is completely 

overlapping with a run-on conserved block. Therefore none of the 47% of known 

H/ACA-box snoRNAs, which would have been returned by the filter algorithm ap-

peared as a result because they weren’t in the input set of conserved long fragments. 

However, about 50% of the nucleotides in known H/ACA-box snoRNAs appear to be 

conserved. Examining some conservation plots of known H/ACA-box snoRNAs dif-

ferent ‘patterns’ of conservation were observed spanning from zero to five conserva-

tion peaks, they never occurred in a big completely conserved block (for examples of 

conservation profiles see Appendix I). Another file was therefore created, where 

closely located conservation blocks (closer than 120nt) are joined together (‘phast-

Cons pieces, joined) and indeed, 73 out of 113 Huang H/ACA snoRNAs are now co-

vered by these conserved blocks suggesting that this set might have been an input set 

to achieve higher sensitivity in the prediction. 

However, since the file containing ‘joined phasCons pieces’ covers already half of the 

D. mel genome the whole genome can be used as input as well. However, primarily 

the applicability of RNAfold in terms of computation time to this large input set was 

examined before re-folding (see Table 4 next section). 
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Table 3. Primary sequence conservation analysis of the set of known H/ACA-box 
snoRNAs. 

     File      

 

   Blocks    Nucleotides 

     

H/ACA snoRNAs     113 16,151 

       

PhasCons pieces > 0.9   1,591,344 34,656,886 

H/ACA pieces in conserved blocks 388 7,747 

Complete H/ACA in conserved blocks 0  - 

       

PhasCons pieces > 0.9, joined 154,357 69,746,740 

H/ACA pieces in conserved blocks 106 14,313 

Complete H/ACA in conserved blocks 73  - 

   

 

2.3 Secondary structure prediction 

Predicting the secondary structure of a large sequence is challenging since it is not 

forming one big structure, but various little sub-structures. Taking into account that 

both DNA strands can be transcribed into RNA, thus doubling the search space, the 

genome sequence of D. mel gives a total of 260 million bases (twice the genome size) 

to predict secondary structure from. 

2.3.1 Runtime for RNA secondary structure prediction  

The RNAfold algorithm is a global secondary structure prediction based on minimum 

free energy (MFE) (39); it uses a 2D-matrix describing all possible nucleotide pair-

ings of the input sequence of length n and therefore has a time complexity of O(n2). 

Since possible structures are searched within this long sequence rather than folding 

the genome into one big structure, local alignments are favourable rather than a global 

one. In order to predict possible ‘foldings’ of genome sub sequences, a brute force 

approach would be to split the whole genome into sub sequences of a desired size and 

predict the secondary structure of each using RNAfold (38). However, not to miss out 

on any possible structure, the sub sequences need to overlap, the more they do the 
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more likely all the foldings are picked up. In an ideal case this means, we predict 

secondary structure using a window sliding over the whole genome nucleotide by nu-

cleotide. Consequently 260 million sub sequences  would be faced. Evidently, this is a 

process of enormous time complexity: O(n2)*x, with x number of sub-sequences. To 

address this problem the Vienna Package provides a program for whole genome 

secondary structure prediction, RNALfold (40). It does not search for possible base 

pairings of far distant nucleotides throughout the genome but restricts its search space 

by a maximal folding size L. It implements the RNAfold algorithm and runs in the 

same time complexity. However, this implementation avoids calling the RNAfold 

program 260 million times, resulting in substantial improvement in actual runtime, In 

fact, benchmark tests on a small random sequence of 1 Mb revealed that RNAfold 

would run in an infeasible time (see Table 4). Given this benchmark test RNALfold 

was chosen for whole genome secondary structure prediction. 

 

Table 4. Time requirement of RNAfold contrasting RNALfold.  

 

 

   RNAfold    RNALfold 

   

Time for sequence length    

 = 1 * 106 630m 8m47s 

   

Time for sequence length    

= 265 * 106 167072m ~ 2329h* 38m ~ 0.6h 

   

*indicates extrapolated value 

 

2.3.2 Problem of minimum free energy: RNALfold 

RNALfold predicts secondary structure of a given RNA sequence based on thermo-

dynamic stability using the minimum free energy algorithm (39). The program was to 

the whole D. mel genome and returned all energetically favourable structures up to a 

given maximal length. These possible structures, predicted on both strands, were  
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overlapping and covered the genome almost completely (see Figure 3). In fact, the 

number of nucleotides involved in theses structures together covers the genome size 

more than four times! This obviously introduces a lot of false-positives, resulting in a 

poor specificity and selectivity. However, to get a better idea of the actual false-

positive rate a random sequence set was created, representing a negative set, with 

length of the D.mel chromosome 3R (largest chromosome) and secondary structures 

was predicted in both, the sequence of chromosome 3R and in the random sequence. 

Surprisingly, a similar number of structures (chr3R: 824,196 / random sequence: 

945,454) was obtained, suggesting that MFE secondary structure prediction is not a 

good method to distinguish functional (coding or non-coding) RNA from random se-

quence. This observation is consistent with a statistical analysis by Rivas et al., stating 

that secondary structure alone is generally not significant enough for the detection of 

ncRNAs (41).  

 

Figure 3. Illustration of predicted secondary structures in genome sequence. Cut-
out window of UCSC genome browser showing predicted secondary structures with 
RNALfold in an intron of a coding gene. Secondary structures, shown as black bars, 
cover the region multiple times. Arrows indicate reading direction. 

 

! 

1,066 Mb in Lfold structures

265 Mb in genome sequence
" 4



 19 

However, at this time no other tool, applicable on a whole genome scale, was avail-

able to predict secondary structures using another method. Optimisation of the param-

eters for RNALfold was required to fit the purpose of this study. RNALfold allows 

the user to choose between several options, which have different effects on the pre-

dicted structure of the RNA. Since there is no actual experimental evidence for how 

the structure forms in vivo, the authors left it to the user to adjust the parameters. One 

of the options is how to treat ‘dangling end’ energies for bases adjacent to helices in 

free ends and multi-loops: With (-d1) only unpaired bases can participate in at most 

one dangling end. With -d2 this check is ignored, dangling energies will be added for 

the bases adjacent to a helix on both sides in any case. -d0 ignores dangling ends alto-

gether. 113 sequences of known H/ACA-box snoRNAs were folded using –d0, -d1 

and –d2 option respectively. The main features of the three different secondary struc-

tures of each known H/ACA-box snoRNA were derived to get an idea of the ‘aver-

age’ shape for each structure set (-d0/-d1/-d2) shown in Table 5. The frequency of 

each feature is shown according to the dangling option used for folding. An example 

is given in Figure 4. Using each option to fold the sequences of the known H/ACA-

box snoRNAs, it was found that this seemingly minor change has a large impact on 

the prediction of the most preferable structure and therefore changes the composition 

of structures in the folded set substantially. The possibility of optimising the secon-

dary structure prediction step will be investigated by changing the default value (–d2) 

when folding the whole D. mel geno 

Table 5. Main features of predicted secondary  structures. *multiloops are loops 
with more than 2 protruding stems. 

     

Foling 

optiont 

Frequency of structures  

with number of hairpins 

Frequency of structures 

with multiloop 

     

 1 hairpin 2 hairpins >2 hairpins  

     

D0 1 98 13 7 

D1 4 101 8 30 

D2 8 91 14 37 
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Figure 4. Illustration of secondary structure prediction. Folded is the same se-
quence with each of the three different dangling end options (-d0, -d1, -d2 f.l.t.r). The 
example sequence is a known H/ACA box snoRNA. 
 

This study will be continued using all three sets of secondary structures in parallel, 

contrasting the prediction performance of them respectively throughout the whole 

process to obtain the optimal result by either choosing one of these sets or combining 

all of them together. Primarily, RNALfold was applied the whole D. mel genome 

using all three options. To calculate the sensitivity respectively, the number of known 

H/ACA-box snoRNAs that appear in each secondary structure prediction set was de-

termined. To be classified as TP the secondary structure of a known H/ACA-box 

snoRNA must fulfil the requirement to appear in the prediction set with a maximal 

deviation of two nucleotides. Surprisingly, although the set of predicted structures 

covers the genome multiple times, not all of the known H/ACA-box snoRNA struc-

tures have been predicted. Only 30 out of 113 known H/ACA-box snoRNAs were 

identified with the option –d0 (see Table 6). Thus the trade-off between sensitivity 

and selectivity in the case of RNALfold is particularly unfavourable. To analyse why 

the sensitivity is so low, folding energies of the known H/ACA-box snoRNAs were 

analysed revealing a relatively high energy (data not shown), which correlates with 

the finding that H/ACA-box snoRNAs in vivo never occur alone but incorporated in a 

complex of four proteins. These proteins are able to keep the H/ACA box ‘in shape’ 

explaining why no strong folding energy needs to be achieved. Considering these cir-

cumstances we confirm again that MFE is not the optimal approach to predict the 

secondary structure of H/ACA box snoRNAs as they might occur in vivo. 
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Table 6. Secondary structure prediction with RNALfold.  
      

 Structures  Performance measure 

    

Folding 

Option 

Whole genome 

Count 

H/ACA-box snoRNA 

Count 

 

 

Sensitivity 

% 

Selectivity 

% 

      

D0 7,413,636 30  26.55 4*10-4 

D1 8,727,229 47  41.59 5*10-4 

D2 10,237,817 51  45.13 5*10-4 

 

To overcome the problem with MFE based folding, the partition function algorithm 

for secondary structure prediction (42) could be utilized, which has also been imple-

mented as part of RNAfold in the Vienna Package. However, Edvardsson et al. 

showed that classification of H/ACA snoRNA in yeast based using these probability 

curves are not very successful (15). One might expect different results in vertebrates, 

but time complexity is a major problem for the partition function algorithm as well. 

Meanwhile there is an implementation of the local RNALfold, which uses the parti-

tion function making it possible to predict secondary structures on a whole genome 

scale without MFE. The program, RNAplfold, is also part of the Vienna Package (43). 

However, at the stage of whole genome folding, this program was not yet available, 

so RNALfolded structures were used as initial input, tolerating its poor sensi-

tivity/selectivity trade-off. 

2.4 Summary 

The analysis showed that all three considerations are part of the problem of prediction 

H/ACA-box snoRNAs: The used filter criteria turned out to be insensitive and the as-

sumption that H/ACA-box snoRNAs are highly conserved holds true only for part of 

the known H/ACA-box snoRNAs. Furthermore, RNA secondary prediction revealed 

to be a major problem, but it is unfeasible to address the problem of RNA folding in 

the given time frame. However, missing out possible H/ACA-box snoRNAs can be 

avoided by scanning the whole genome rather than just conserved blocks. Beyond that 

properties of known H/ACA-box snoRNAs can be modelled more precisely by chan-
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ging the filter criteria. To do this the next section is devoted to the improvement of 

these filter criteria. 
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3 Improving filter criteria  

 

An improvement of the filter criteria can be achieved by analysing the given data 

manually, which is feasible regarding the relatively small dataset of known H/ACA-

box snoRNAs, or by applying automated, computational learning methods to find pat-

terns not recognizable by eye.  

3.1 Automated Method – Machine Learning 

3.1.1 Introduction 

Supervised machine learning algorithms try to learn decision rules from labelled input 

data, in this case, known H/ACA-box snoRNAs and non-H/ACA-box snoRNAs. 

These rules are used to classify novel data. Machine learning algorithms have been 

successfully applied to different biological problems as the analysis of genome-wide 

expression data (44), to predict genetic regulatory response (45) and also to distin-

guish protein-coding from non-coding RNAs (46). It might therefore a useful tool to 

find unrecognised criteria contained within the known H/ACA-box snoRNAs. 

3.1.2 Method 

Sequences and secondary structure predictions of the known H/ACA-box snoRNAs 

were used to extract sequence and structure information, which could possibly be in-

teresting, of each candidate. In total there are 45 attributes (features) obtained per in-

stance, where an instance is an H/ACA-box snoRNA (for list of attributes see Appen-

dix II.I). 

This data serves as input to the machine-learning algorithm. Applied was the Weka 

program package (47), which has been used for bioinformatic tasks such as automated 

protein annotation (48,49) ,probe selection for gene expression arrays (50) and many 

more. Many of the algorithms implemented in Weka are described in (51). However, 

no algorithm can be favoured in general, it needs to match the data mining problem 

specifically to yield useful information and realistic models. Therefore Weka provides 

several types of model algorithms: decision trees, rules functions and Bayesian classi-

fiers. To determine which algorithm is most suitable for classifying H/ACA-box 
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snoRNAs they have been analysed on a training set. Training with 4 fold cross valida-

tion was performed and the percentages of correctly and incorrectly classified instan-

ces were obtained. The training set consisted of known H/ACA-box snoRNAs (posi-

tive) and randomly selected genomic sequence as negative controls. Negative controls 

were selected from different genomic locations in one chromosome: introns, untrans-

lated regions (UTRs) and coding sequence (CDS).  H/ACA-box snoRNAs are not ex-

pected to occur in UTRs nor in CDS these controls are supposed to contrast the se-

quence properties (nucleotide distribution, GC content etc.) to real H/ACA-box 

snoRNAs. The intronic negative control might have similar sequence properties but a 

different secondary structure, providing the learning algorithm with non-H/ACA 

shapes. Furthermore different amounts of shuffled sequences of the positive H/ACA-

box snoRNAs were added to provide another contrast with exactly the same nucleo-

tides but a totally different structure. The number of shuffled sequence to original 

snoRNA was varied, so the algorithm builds a model involving more secondary struc-

ture attributes rather than sequence properties and patterns.  

3.1.3 Results 

Detailed results of this algorithm comparison are shown in Appendix II.II. I choose to 

use the J48 algorithm (52) for training since it had the best percentage of correctly 

classified instances after 4 times cross validation on the training set. Furthermore, in 

contrast to some similar performing algorithms, J48 returned a decision tree, which 

revealed the classification rules. Out of the 45 attributes only about 10 were selected 

by the learning algorithm to build each model. However, the chosen attributes were 

different depending on the input set, resulting in a variety of decision trees. An exam-

ple of a possible decision tree is shown in Appendix II.III. 

3.1.4 Summary 

From the 45 given attributes the J48 model algorithm selected subsets, which seem to 

be sufficient to build a model for classification (for decision trees build for each train-

ing set see Appendix II.III). Since the choice of these attributes appeared to be highly 

dependent on the training set they need to be accessed statistically for their signifi-

cance towards the known H/ACA-box snoRNAs. If analysis confirms a continuous 

appearance of these features amongst the known H/ACA-box snoRNAs they can be 

included in the list of filter criteria. 
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3.1.5 One step further: ML as classification tool 

I wanted to determine if the machine-learning algorithm performs better predicting 

H/ACA-box snoRNAs than the first approach on the same dataset. Since the set of 

conserved regions turned out to be useless, both machine learning and the first filter 

algorithm, were applied to the complete D. mel genome previously folded with 

RNALfold. Input is a set of 7,864,903 candidate structures, for performance assess-

ment the 113 known Huang H/ACA-box snoRNAs were used. Sensitivity, specificity 

and selectivity are calculated according to EQ. 1, 2 and 3. All three values vary 

largely depending on the training set, however it was not obvious why this great vari-

ance occurs. Results of the prediction are shown in Table 7 and contrasted against the 

first approach in Table 15. 

 

Table 7. Results of machine learning experiments 1-7 . 

Experiment ML predictions 

 

Performance measure 

   

# Details Total H/ACA 
Sensiti-

vity 
Specifi-

city 
Selec-
tivity 

    % % % 

       

1 standard shuffle 10 41,613 21 18.58 99.47 0.05 

2 standard shuffle 2 16,657 5 4.42 99.79 0.03 

3 standard shuffle 5 46,984 23 20.35 99.40 0.05 

4 standard no shuffled 172,330 31 27.43 97.81 0.02 

5 standard shuffle 1 23,931 2 1.77 99.70 0.01 

6 no shuffle, +1 UTR 11,482 2 1.77 99.85 0.02 

7 no shuffle, +1 CDS 440 0 0 99.99 0 

       

 

3.1.6 Conclusion 

I wanted to investigate if improvement in the prediction can be achieved by machine 

learning. Therefore, I applied the first filter program (2.2) to the whole genome. Some 
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machine learning experiments show an improvement in one or the other value, how-

ever, an improvement in sensitivity always correlates with a decrease in specificity 

and selectivity (see Table 15). The ROC-like plot in Figure 8 illustrates the relation 

between sensitivity and selectivity. Since I didn’t see any possibility to improve the 

machine learning based prediction method, I decided to improve the filter algorithm 

from the first approach. However, using machine learning revealed some interesting 

criteria, which will be verified manually and eventually included in the filter algor-

ithm later on. 

3.2 Statistical analysis of known H/ACA-box snoRNAs 

3.2.1 Introduction 

From the decision trees built during modelling in machine learning I obtained attrib-

utes, which appear to be a good classifier for H/ACA-box snoRNAs. The attributes  

• Size of each hairpin (Bases) 

• Size of biggest internal loops in hairpins (longestShortLR) 

• GC-content (GCseqPaired, -Unpaired, -Hairpin, -Symm, -Asymm, -Bulge) 

• MFE (energy) 

• Number of missing dinucleotides (dinuc_num_missing) 

appeared in the several decision trees, suggesting these might be meaningful. Before 

including these features as filter steps statistical analysis needs to be done. Further-

more I am going to assess features that have been used as filter criteria in the first ap-

proach already and subject them to closer assessment.  

• Sequence length 

• Number of hairpins  

• H-motif 

• ACA-motif 
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3.2.2 Method 

To compare the significance of an attribute for classifying RNAs into H/ACA-box 

snoRNA and non-H/ACA-box snoRNA, I did the statistical analysis on the set of 

known H/ACA-box snoRNAs and contrasted it to negative dataset. The negative 

dataset was obtained by randomly relocating the coordinates of each known H/ACA-

box snoRNA within the same chromosome. I obtained the sequence at this new posi-

tion and predicted MFE secondary structure of this sequence using RNAfold. This 

yielded 113 random genomic sequences and structures with the same lengths as the 

known H/ACA-box snoRNAs. Features of each sequence and corresponding secon-

dary structure in the two datasets respectively were extracted using perl scripts.  

3.2.3 Results 

Features of known H/ACA-box snoRNAs, including total length, number of hairpins, 

the length of single hairpins, internal loop sizes, the number of missing dinucleotide 

combinations, minimum free energy and GC content, were contrasted against a 

dataset of random genomic sequences. Obtained data is visualized in diagrams; tables 

are not shown. Diagrams for each analysed criterion and detailed description are 

shown in Appendix III. The sequence length of known H/ACA-box snoRNAs range 

between 124 and 267 nt, however, apart from two outliers, the majority falls in an in-

terval 124 to 165 nt. The number of hairpins in known H/ACA-box snoRNAs has 

been reported to be exactly two, but according to my analysis, this holds true for less 

than 90%, the rest are structures with mainly 3 hairpins. In the random set, three-

hairpin structures occur in the same frequency as in the known set. However the dis-

tribution of numbers of hairpins can still be clearly contrasted against random struc-

tures, where an equal frequency of structures with one and with two hairpins were 

found. The H-motif is present in only 9% and the ACA-motif in 43% of the random 

set.  Although H/ACA-motifs are not as ubiquitously apparent in known H/ACA-box 

snoRNAs, their frequency is significantly higher (8x higher for H-motif, 2x higher for 

ACA-motif). Since the individual hairpin size appeared in all models build during 

machine learning appeared in all decision trees (attribute ‘bases’ in decision trees Ap-

pendix II.III), this feature was analysed for its significance in contrast to the random 

set as well (Appendix III.III). A clear difference in size distribution was observed: 

The sizes of the two longest hairpins in H/ACA-box snoRNAs are, clustered in an in-

terval between 55-90 nt for the longest and 50-70 nt for the second longest hairpin. 
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Random Structures show no cluster at all, the sizes are equally distributed from 1-145 

nt for both hairpins. The internal loop sizes do not appear in each decision tree nor do 

they have a clearly different distribution from random sequence. However, H/ACA-

box snoRNA internal loops are a little more pronounced in an interval between 6-24  

Figure 5. Histogram of number of missing tri-nucleotides. Known H/ACA-box 
snoRNAs (blue bars) are contrasted against a background of randomly relocated se-
quence 
 

nt, while random sequence loops are distributed up to 38 nt. Analysis of minimum 

free energy and GC content shows that the known H/ACA-box snoRNAs don’t have 

significantly better MFE, in fact the MFE appears to be slightly worse. However, as 

we expected GC content and MFE appear to be connected. The number of missing di-

nucleotide compositions appears often in decision trees, however no substantial dif-

ference in comparison to the random set could be determined. In order to address pos-

sibly higher sequence complexity of H/ACA-box snoRNAs, the tri-nucleotide compo-

sition was analysed and the known set indeed lacks less than expected of the 64 pos-

sible tri-nucleotides. 

By investigating the extrema of each attribute derived from known H/ACA-box snoR-

NAs two were identified (psi28s-2566 snoRNA, psi28s-291 snoRNA) as outliers in 

length. The overall length of the outliers is correlated to hairpin length and to MFE, 

which is itself correlated to GC content. By excluding the outliers a tighter distribu-
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tion of MFE, GC content, hairpin sizes and internal loop sizes is observed (see Table 

8).  

3.2.4 Summary 

With the data obtained in this analysis boundaries for the improved filter algorithm, 

can now be determined, which should lead to an increased sensitivity and specificity. 

Using tighter cut-offs for features by disregarding the two outliers I expect a much 

higher specificity over the whole genome. 

Furthermore, a decision whether to include the H and ACA motif filter had to be 

made. Since just 72 of the 113 known H/ACA-box snoRNAs actually have both mo-

tifs, this cut-off would reduce the TP-rate quite substantially and decrease the sensi-

tivity of our filter. However, the constraint of both motifs were kept as a filter since 

we are looking for very strict criteria to narrow down our large set of input structures. 

 



 30 

4 2ND  approach: prediction of H/ACA-box snoRNAs 

within the whole genome 

 

The results of the first approach revealed that primary sequence conservation is not a 

good predictor or filter for finding H/ACA-box snoRNAs. I found that the nucleotide 

sequence of a large fraction of known H/ACA-box snoRNAs is not conserved 

throughout insects. Consequently I decided to turn to a whole genome prediction ap-

proach. The haploid D. mel genome has a size of about 130 Mb, about 13,767 protein 

coding genes and 808 non-coding genes have been found to date (31).   

4.1 SnoStorm: An improved filter algorithm for H/ACA-box 
snoRNA features 

4.1.1 Method 

From Machine Learning (3.1) and the following manual analysis (3.2) new parameter 

cut-offs were derived, to filter the input dataset for H/ACA-box snoRNA-like proper-

ties, which are summarized in Table 8 and Table 9.  

 

Table 8. Numerical cut-offs of filter criteria used in the algorithm. 
    

Feature  MIN cut-off MAX cut-off 

    

Overall size nt 124 165 

Minimum free energy kJ -56.42 -18.2 

Dinucleotide missing # 0 2 

Trinucleotide missing # 2 19 

GC content % 24 55 

Number of hairpins # 1 4 

1st hairpin size nt 55 109 

2nd hairpin size nt 0 72 
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sum of two hairpins nt 106 148 

loop size of 1st hairpin nt 0 22 

loop size of 2nd hairpins nt 0 21 

max loop of 2 haipins nt 4 22 

 

Table 9. Appearance of H and ACA motif in known H/ACA-box snoRNAs.  

 

With these given parameters I am able to classify all but the two outliers given the 

known H/ACA-box snoRNAs as input dataset. However, the supposably character-

istic motifs “ACA” and “H” are only present in a smaller subset of the known 

H/ACA-box snoRNAs. After performing some tests regarding specificity, I decided to 

keep this criterion anyway in order to massively reduce the candidate space since 

specificity is the most important factor for our purpose. The filter program requires 

input data in fasta-format with a third line containing secondary structure. It outputs 

the candidates classified as H/ACA-box snoRNA-like in the same format and two ad-

ditional files containing scanned features of each candidate and details about filtering 

(see  

Figure 6). 

  

   

 Frequency of motif appearance Requirement for motif 

      Motif             absent             present  

ACA-motif  24 87 yes 

H-motif 35 76 yes 
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Figure 6. Flowchart of filter program ‘SnoStorm’.  

SnoStorm was implemented in perl; it iterates through all given input candidates 

scanning primary sequence and secondary structure for a fixed number of features. 

Since it operates largely with regular expression on the given strings (nucleotide se-

quence, secondary structure in Vienna notation) it is independent from the length of 

each candidate. Moreover, the size of each candidate sequence was restricted in the 

initial secondary prediction step by RNALfold (-L, maximal window size) already. 

Therefore the time complexity O(n), with n being the number of candidates. 

4.1.2 Results 

Executable source code of the filter program ‘SnoStorm’ and additional test input 

files can be found in Appendix IV.II. SnoStorm was used on each input set of differ-

ent secondary structure predictions (-d0,  -d1, -d2), the filter substantially reduced the 

number of possible candidates down to a two orders of magnitude smaller set com-

prising H/ACA-box snoRNA-like predictions.  In all three cases we cut down the in-

put set by more than 99%/. Analysis of due to which criteria the input set was Sensi-

tivity, specificity and selectivity are shown for each applied dangling option. 

Table 10. Results of improved filter algorithm ‘SnoStorm’. 
    

 Input set 

SnoStorm  

predictions 

Performance  

measure 

      

Folding 

option Total H/ACA Total 

 

H/ACA 
Sensiti-

vity 
Specifi-

city 

Selec-
tivity 

     % % % 

        

D0 7,413,636 30 10,839 4 3.54 99.85 0.04 

D1 8,727,229 47 31,646 12 10.62 99.64 0.04 

D2 10,237,817 51 44,942 14 12.39 99.56 0.03 
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4.1.3 Summary 

The presented algorithm, SnoStorm, was designed to be highly specific resulting in a 

substantially reduced candidate set of predicted H/ACA-box snoRNAs.  

Being aware of the low sensitivity but according to the approximation from the intro-

duction Box 1 this sensitivity is bearable assuming that the set of known H/ACA-box 

snoRNAs might not even be representative for the class of largely undiscovered 

H/ACA-box snoRNAs. Performance of SnoStorm is contrasted to the first approach 

for prediction H/ACA-box snoRNAs and to the attempt of using machine learning in 

Table 15. 

4.2 Using conservation of secondary structure 

4.2.1 Method 

The prediction so far resulted in a very low sensitivity, largely due to the poor applic-

ability of MFE folding for H/ACA snoRNAs. In this step I try to overcome this prob-

lem by re-folding. Henceforth, the prediction set comprises now just ~1% of the ori-

ginal input, so it was possible to use a more complex algorithm to predict the secon-

dary structure, assuming to obtain a structure which is closer to the ‘real’ structure. 

Single sequence methods based on MFE have some intrinsic limits: many bases of 

structural RNAs are modified by sugar methylation, pseudo-uridinylation etc. Addi-

tionally some functional RNAs have bistable structures, so the thermodynamic model 

is just an estimate of the real folding. Therefore, it is generally believed that compara-

tive methods return more reliable results (53). There are basically three approaches to 

obtain aligned structures from RNA sequences: (1) Simultaneous folding and 

alignment based on the Sankoff algorithm is extremely time intense (O(n3m), where n 

sequence length and m number of sequences) and unfeasible for  this whole genome 

approach. Another approach is to align homologous secondary structures (2), how-

ever, this requires highly reliable individual secondary structures (derived by crystal-

lography/NMR), which is not available at this stage. The third possibility (3) is to per-

form multiple sequence alignment of the homologous RNA sequences and use this 

alignment as input for secondary structure prediction. Since 9 insect species are se-

quenced and aligned there is a dataset of high homology sequences available, so I 

choose this approach.  Several programs have been published for the task of folding 
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an alignment, the most recent of which is RNAz (54). Although it decreases time re-

quirements benchmark estimate the effective computation time for the whole D.mel 

genome to be infeasible (see Table 11). 100 alignments of length 160nt respectively 

were used to execute benchmark test and approximated the time requirement to run 

RNAz on our set of SnoStorm-predictions (44,000 candidates) and on the total tiled 

D. mel genome (265,192,960 candidates). Regarding these approximations, I re-

stricted the method to re-fold the three SnoStorm-prediction sets 

Table 11. Time requirement for RNAz. 
 

Number of alignments Time in Seconds 

 

100 39  

44,000 17,199  

265,192,960 103,661,276  

 (= 1,200 days)  

   

 

4.2.2 Results 

For all candidates predicted by SnoStorm multiple alignments were obtained from 

UCSC, and subsequently selected for the six most related species (because RNAz can 

currently just handle up to six sequences in the alignment). Given these alignments I 

applied RNAz and obtained the number of consensus structures. 

Table 12 Results and performance measure using SnoStorm and RNAz. 
Folding 

option Input 

SnoStorm+RNAz 

Predictions 

Performance  

measure 

 Total H/ACA Total 

 

H/ACA 
Sensiti-

vity 
Specifi-

city 

Selec-
tivity 

     % % % 

        

D0 7,413,636 30 138 3 2.65 >99.99 1.64 

D1 8,727,229 47 428 6 5.31 >99.99 1.40 

D2 10,237,817 51 624 9 7.96 99.99 1.44 
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Table 13. Filtering of consensus structures obtained by RNAz 

   

Folding 

option 

 

Input 

 

Sequential filters 

  Non linear Length <165 2 hairpins hairpin sum 

  # % # % # % # % 

          

D0 10,839 6,751 62 1,476 14 355 3 183 1 

D1 31,646 18,924 60 5,401 17 892 3 428 1 

D2 44,942 26,693 60 8,188 18 624 3 624 1 

 

Consensus structures might not have the characteristic H/ACA box snoRNA features 

anymore; they can even be linear due to sequence alignments with many insertions 

and deletions. Therefore I implemented some loose filters to discard structures that 

vary too much from the individual structure in D. mel (see Table 13). (Executable 

source code of the sequential filter and additional test input files can be found in Ap-

pendix IV.III. ) The first filter discards all cases where no consensus structure was 

found, i.e. where the consensus structure is linear. The consensus structure can also be 

quite long due to insertions in the alignments, so secondly, I just want to keep struc-

tures that do not exceed the maximal size of known H/ACA-box snoRNAs (165nt). 

Furthermore, two hairpins are required in a third filter step, which should (forth) have 

a cumulative size of 106nt–148nt (which is also a cut-off value in ‘SnoStorm’). The 

remaining consensus secondary structures after filtering adapt an H/ACA-box 

snoRNA-like shape. Only about 2% of the consensus structures obtained by RNAz 

survive the filter, however, a much larger fraction of the known H/ACA-box snoR-

NAs make it trough the filter (50-75%). This suggests that the RNAz consensus struc-

ture in combination with the applied rough filter criteria is a good predictor for 

H/ACA-box snoRNAs. 

Since the characteristic motifs H and ACA could be shifted in respect to the structure 

during consensus structure prediction we investigated their presence in our final pre-
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diction sets of 183 (-d0), 428 (-d1) and 624 (-d2) possible H/ACA snoRNAs. The re-

sults of this analysis are shown in Table 14. However, since the consensus structure as 

such does not exist in vivo, I wont use the relative position of the motif in the consen-

sus structure as additional filter step. 

 

Table 14. Analysis of H/ACA motif in consensus secondary structures. 

Folding 

option 

Input Appearance of sequence motif in consensus structure 

  ACA motif H motif H/ACA motifs 

  # % # % # % 

        

D0 183 156 85 25 18 22 12 

D1 428 393 92 100 23 92 22 

D2 624 580 93 163 26 149 24 

 

4.2.3 Summary 

Comparing the three different structure sets obtained by different folding options at 

the end of the prediction process (Table 12), reveals that –d0 has the highest selec-

tivity, however the worst sensitivity. Folding with -d2 gives us the most sensitive pre-

diction and –d1 ranges in the middle of these two. The trade-offs between sensitivity 

and selectivity, however, is almost none between the three dangling options. The set 

of predicted H/ACA-box snoRNAs overlap only in a small fraction (see Figure 7), 

suggesting that the structures predicted by RNALfold have been quite different in the 

first place. No set can be favoured due to any performance measure, so, the decision, 

which one to put the highest confidence in, is subjective.  



 37 

 

Figure 7. Intersection of H/ACA box snoRNA classified sets. Predicted possible 
H/ACA snoRNAs using different dangling options for initial folding step.  17 candi-
dates appear to be classified as H/ACA snoRNA by all three options, however, there 
are still 1058 unique putative H/ACA snoRNAs in total. 
 

Finally, all three dangling options predict structures, which might occur in vivo. Any 

RNA fragment can adapt a great variety of shapes under different environmental con-

ditions concluding that none of the assumed dangling behaviours is in fact ‘wrong’. 

Choosing one or the other option rather changes the rank of a structure in a list of pos-

sible foldings each time giving us another energetically most favourable structure. 

Under this assumption it appears most reasonable to consider putative H/ACA-box 

snoRNAs obtained by all of the three sets together. Analysing and validating predic-

tions from all sets in parallel, might give additional insight in which assumed dan-

gling behaviour models in vivo folding best. 
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5 Summary: Comparison of all approaches predict-

ing H/ACA-box snoRNAs 

Finally, all prediction approaches explored in this work were compared (Table 15).  

Table 15. Comparison of all prediction approaches. 
     

Method Classified structures Perfomance measure 

   

 

 

 

TP 

 

FP 

 

TN 

 

FN 

Sensi- 

tivity 

Speci- 

ficity 

Select- 

ivity 

        

ML exp 1 21 41,592 7,823,198 92 18.58 99.47 0.05 

ML exp 2 5 16,652 7,848,138 108 4.42 99.79 0.03 

ML exp 3 23 46,961 7,817,829 90 20.35 99.40 0.05 

ML exp 4 31 172,299 7,692,491 82 27.43 97.81 0.02 

ML exp 5 2 23,929 7,840,861 111 1.77 99.70 0.01 

ML exp 6 2 11,480 7,853,310 111 1.77 99.85 0.02 

ML exp 7 0 440 7,864,350 113 0 99.99 0 

        

SnoStorm d0 4 10,835 7,402,688 109 3.54 99.85 0.04 

SnoStorm d1 12 31,634 8,695,482 101 10.62 99.64 0.04 

SnoStorm d2 14 44,928 10,192,776 99 12.39 99.56 0.03 

        

RNAz d0 3 180 7,413,343 110 2.65 >99.99 1.64 

RNAz d1 6 422 8,726,694 107 5.31 >99.99 1.40 

RNAz d2 9 615 10,237,089 104 7.96 99.99 1.44 

        

 

Applying the first filter algorithm to the whole genome resulted in a sensitivity of 

10%, however yielding a low selectivity, i.e. a lot of potential false-negatives in the 
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prediction set. This rough filter however, was just supposed to provide an initial idea 

of how many snoRNAs could be expected and which problems could occur.  

The machine learning approach to predict H/ACA-box snoRNAs was unsteady in 

sensitivity, specificity and selectivity depending on the training set. Machine learning 

experiments 1,3 and 4 were extremely sensitive, however yielded the most potential 

false-positives as well. On the other hand experiments 5, 6 and 7 reduced false-

positives substantially but yielded a very low sensitivity. I designed a filter algorithm 

SnoStorm to filter the given input set by a carefully analysed selection of criteria. This 

improved selectivity and specificity steadily but lost some percentage of sensitivity 

instead. The obtained sets of predictions have a high specificity with numbers of puta-

tive H/ACA-box snoRNAs ranging from 10,000 (-d0)– 44,000 (-d2). By predicting 

the consensus structure of these candidates, and subsequent filtering, only (25%-50%) 

in sensitivity was lost but two orders of magnitude more selective prediction sets were 

obtained comprising numbers of putative H/ACA-box snoRNAs ranging from 183 (-

d0) – 624 (-d2). The ROC-like plot in Figure 8 illustrates the relation between sensi-

tivity and selectivity. The green spot indicates the first naïve prediction algorithm. It 

is close to some of the machine learning approaches (blue). However, sensitivity and 

selectivity of machine learning is distributed without any pattern in the ROC space, 

illustrating how variable the results where depending on our training set. The predic-

tions obtained from SnoStorm (orange) are very selective without loosing too much in 

sensitivity and by applying RNAz we can even achieve a substantially better selec-

tivity.  
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Figure 8. ROC (receiver operating characteristic)-like plot. Graphical representa-
tion of the trade-off between the selectivity and sensitivity of all prediction ap-
proaches. The more a data point falls into the upper-right corner of the ROC space the 
more accurate the prediction. 
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6 Conclusion 

There are 113 known H/ACA-box snoRNAs in the genome of D. mel and possibly 

many more yet to be discovered. Other research groups, as discussed in the introduc-

tion, applied different approaches to identify novel members of this class experiment-

ally and bioinformatically, with varying success. Here I present a new approach using 

machine learning and other methods to identify new criteria to predict H/ACA box 

snoRNAs.  

The first surprise was that H/ACA-box snoRNAs are not as conserved as was ex-

pected. None of the known H/ACA-box snoRNAs were included in a dataset compris-

ing the most conserved 26% of the D. mel genome. Secondly, the four most widely 

reported features of H/ACA-box snoRNAs, namely, two hairpins, H/ACA-motifs and 

symmetry and size of hairpins, did not prove to be very sensitive predictors. To ad-

dress these problems secondary structures were predicted across the whole genome 

and the sequence and structural characteristics of the known H/ACA-box snoRNAs 

were reviewed.  

The program RNALfold was used to predict structures on a genome wide scale. It ran 

in 1-2 days on an 8 CPU machine and detected 25%-43% of the known H/ACA-box 

snoRNAs depending on the folding parameters used. In contrast to the conservation 

approach however, this input set contained at least a subset of true-positives.  How-

ever, RNALfold returned a very large number of possible secondary structures, which 

in fact covered the whole genome more the 4 times, i.e. including each nucleotide in 

the genome in four different structures on average.  

Machine-learning techniques were used to explore a large number of additional se-

quence and structural characteristics of the known H/ACA-box snoRNAs and identi-

fied a small set of significant features including sequence complexity, internal loop 

sizes and hairpin sizes. These were combined with the prediction criteria from the 

first approach and subjected to a detailed statistical analysis verifying the significance 

of each feature in contrast to random sequence. A program, SnoStorm, was developed 

with these new criteria, finding 10,835-44,928 putative H/ACA-box snoRNAs. 

SnoStorm has a specificity ranging from 99.56%-99.85%, sensitivity of 3.54%-
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12.39%, and selectivity of  0.03%-0.04%, all of which are improved in regard to the 

first algorithm SnoSearch  

Using evolutionary conservation of secondary structure as evidence for functional 

importance a higher confidence set of H/ACA-box snoRNAs predictions can be ob-

tained. RNAz and multiple alignments of up to 6 Drosophilae species were used to 

identify 183-615 putative H/ACA-box snoRNAs having significant conserved secon-

dary structure. There was a small loss in sensitivity (2.65%-7.96%) due to 1-6 known 

H/ACA snoRNAs with low secondary structure conservation. However, the specific-

ity was increased to over 99.99%, and the selectivity improved by almost two orders 

of magnitude up to 1.4%-1.64%.  

In conclusion, a combination of criteria has to be used to predict H/ACA-box snoR-

NAs with reasonable confidence. Since there is only a very small set of known 

H/ACA-box snoRNAs attention has to be paid to avoid over-fitting the data by select-

ing too many criteria. A reasonable balance has to be found between narrowing down 

the large input and being too specific to the known set. A large set containing tens of 

thousands of putative H/ACA-box snoRNAs and a smaller and higher confidence set 

comprising only several hundred predictions were identified. These might represent 

reasonable upper and lower bounds for the total number of H/ACA-box snoRNAs in 

D. mel. genome. Ultimately, experimental validation by micro array expression analy-

sis and subsequent sequencing of positive candidates will reveal which is a more ac-

curate estimate of the number of H/ACA-box snoRNAs that await discovery. 

These experiments are currently underway (see below), focussing on the smaller set 

of higher confidence predictions. Following this, a second set of arrays will be de-

signed to assess the validity of the larger set, using a random subset of the predictions, 

to obtain an estimate of the true positive frequency in this set. 
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7 Validation of predicted H/ACA snoRNAs 

7.1 Microarray 

As a high throughput method of validating the predictions a microarray was designed-

for the Combimatrix 12k array platform. Two probes were designed for each predic-

tion using Combimatrix’s chip design software. Probes for all known snoRNAs were 

added for positive controls, as well as mRNA contamination controls and other small 

RNAs such as 5S. All large RNA transcripts can be removed ) (including mRNAs, 

tRNAs etc) as a source of possible cross hybridisation by hybridising the array with 

size fractionated RNA (less than 300nt. To estimate the quantity of degraded mRNA 

passing through the filter we included mRNA contamination controls. Flanking con-

trol probes were also added around known snoRNAs within exons, introns and inter-

genic regions. Antisense probes were added as negative controls as well. 

 

 

Figure 9. Choice of probes for micro array experiment. Shown is a view of the 
UCSC genome browser with coloured blocks representing probes we choose for vali-
dation. For a randomly chosen subset of previously known snoRNAs (black) we use 2 
sense probes (green) and 1 antisense probe (red) respectively. Additionally we posi-
tioned intronic control probes around and in between clusters of snoRNAs and exonic 
probes in the flanking exons as close as possible to the corresponding intron. 
 

7.2 PCR validation 

To amplify RNAs as short as our predicted snoRNAs a special priming technique has 

to be used in order not to occupy the whole snoRNA sequence with primers. The kit 

was originally designed for detecting miRNAs. However, it appears to work better for 

snoRNAs since they are a little longer than miRNA precurosor. The protocol was tes-
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tested with two known H/ACA-box snoRNAs, one of which has been also predicted 

as snoRNA. A clear sequence signal was obtained in both cases, indicating the tran-

script is apparent. This technique will be applied for validation of more H/ACA-box 

snoRNA predictions. 

 
Figure 10. Validated H/ACA-box snoRNA. This known H/ACA-box snoRNA has 
also been predicted as such by the improved algorithm. We validated its existence by 
sequencing the transcript using specific primers at different positions in the snoRNA. 
Yellow lines indicate correctly obtained sequences. In fact, sequencing suggests that 
the actual length of the snoRNA transcript is several nucleotides longer than anno-
tated before, the predicted length appears to be correct.  
 

Protocol 

Total RNA was isolated from D. mel larvae and pupae by Trizol extraction.  Two 

hundred nanograms of total RNA were polyadenylated according to the NCode™ 

miRNA First-Strand cDNA Synthesis Kit user manual, followed by first-strand syn-

thesis using the universal reverse transcriptase primer provided with the kit.  Diver-

ging from the NCode protocol, one microliter of total undiluted first-strand cDNA 

was used in each 50 microliter PCR reaction. Due to the fact that obtaining a positive 

signal far outweighed our concerns with high background signals, PCR conditions 

were used with notably low stringency (see Table 1). However, Platinum Taq 

polymerase was used to reduce our chances of anomalous results. 

Forty microliters of each PCR reaction were transferred to 1.5mL tubes after thermal 

cycling, and concentrated down to ~10 microliters using a vacuumed-enabled  micro-

centrifuge heated to 45ºC for ~30minutes.  Samples were than loaded on a 4% aga-

rose gel composed of 2% DNA Grade Agaraose (Progen Biosciences) and 2% Meta-

Phor low molecular weight nucleic acid resolving agarose (Cambrex Bio Science).  

Gels were run at 110V for ~1 hour.  Bands of predicted size were excised from the 
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gel, and gel purified using Promega’s Wizard SV Gel & PCR clean-up system.  Puri-

fied PCR products were cloned into pGEM T-easy following the manufacturer’s in-

structions, transformed into DH5α E.coli, and grown overnight on LB plates supple-

mented with 20 micrograms X-gal and 100 micrograms/microliter ampicillin.  Two 

positive (i.e. white) colonies from each plate were screened using colony PCR and, if 

positive for the predicted product, were grown overnight.  Plasmid DNA was isolated 

using Promega’s Wizard Plus SV Miniprep Kit.  Sequencing was performed at the 

local Australian Genome Research Facility laboratory. 

 

Table 16 PCR conditions. 
   

Thermal Cycling Parameters  PCR Reagents 

   

Temperature (ºC)  Time (minutes)  Reagent  Final concentration 

       

94  2  MgCl2  1.5 mM 

94  30  dNTP  0.2 mM 

45  30  Plat Taq  1 U 

72  30  miRNA primer  0.2 µM 

72  10     

10  ∞     
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Figure 11. Overview of PCR bases snoRNA validation.  
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